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Our ActEv approach with object detection and custom tracking algorithm
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Holistic server-client approach
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Workflow
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First step

= From the provided video material each frame was
extracted

= Those frames were generated using OpenCV

= All frames are stored in the central file system

= Each image is provided with the original video title and a
frame ID

= The meta information and references are stored in the
database

Frame
extraction

recognition unit

Management system
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Second step

Several clients in network compute state-of-art-
frameworks

With the usage of Detectron and Yolo9000 objects and
persons were detected

The extraction of body-key-points is executed with
OpenPose

All outputs for each frame are stored in the database

Frame
extraction

recognition unit

Management system




Workflow
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Third step

= The tracking results for all detected objects were
estimated

= The activity recognition unit estimate the activities

= The results can be exported in a suitable exchange
format

Frame
extraction
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Management system
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Workflow - Tracking Unit
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Tracking

=  We use the tracking algorithm introduced last year

= As aresult, unique id, direction, speed, and motion vectors
estimated for a given time window
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Motion pattern analysis & simple heuristics
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Motion pattern analysis & simple heuristics

Bounding box interaction for a specific period

l Activity es%lmation unit '
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Workflow - Activity Estimation Unit

Activity classifier (
g | wansiormatonof OpenPose keypoins.
= Generate an synthetic ground-truth- 2 | oy
dataset with the unity game engine :
= Body-key-points extract as feature- s ot e o i,
vectors with OpenPose B
L

= Convolutional layers extract geometric
temporal features from a single
prediction window

The convolution layer acts on a prediction window and
recognizes geometric features for which it may be
relevant to the marked activities. In our configuration,
the prediction window is 15 frames long

= Recurrent layers extract temporal
features over time

= A probability vector for all desired
activities to obtain the final classification

The result of the recurring layer from the current
prediction window is transformed into a probability
vector for all desired activities to obtain the final
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Workflow - Ground Truth Data
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Generate an synthetic ground-truth-dataset (
= Download the animations from ,Mixamo*

SOURCE
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‘ q mix m Characters Animations o Lodln
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Mixamo

Get animated.

Animate 3D characters for games, film, and more.

Sign Up for Free

| i origin after
transformation of OpenPose keypoints
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Body Points with x
and y coordinate




Workflow - Ground Truth Data

Generate an synthetic ground-truth-dataset
Download the animations from ,Mixamo*

=  Simultaneously recording activities from
10 different perspectives

= Multiple variances of activity animations
are possible

= 55835 synthetic animations were generated
and decomposed into 536517 frames
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Workflow - Feature Exiraction

Body-key-points extract as feature-vectors RN
with OpenPose

INPUT
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Movement of the body points right elbow, right wrist,
right shoulder and left wrist over several frames
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= The COCO model of OpenPose provides
18 body-key-points

= This body-key-points were extracted from
all animations and stored in the database




Workflow - Feature Extraction
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Normalization of body-key-points

= Transform the image coordinates to
a body-centered point

= Neck is the origin of coordinates
= Body-points also must be normalized

= Distance between neck and hip
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Workflow - Feature Extraction

Normalization of body-key-points

The normalized and transformed
body-key-points are independent
from the image resolution and format
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Movement of the body points right elbow, right wrist,
right shoulder and left wrist over several frames

0 Neck_X
Coordinate system based on the input image :
. o
. Object-related coordinate system
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Workflow - Creating Classifier

Convolutional layers extract geometric .L_UI %
temporal features from a single prediction 1

. create intelligence™
window

= We get 36 individual ,sensor values®

The convolution layer acts on a prediction window and
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- IECOQHIZE
relevant t vities. In onfiguratiol
the prediction window is 15 frames I g

= Sensor values are labeled with an
activity and sorted chronologically in
ascending order

The task of the recurring layer is to train temporal
characteristics across sequences. For example, it can
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= The detected activities are stored in the
database with a probability value
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Mobile Application

Development of an mobile iOS application
for activity recognition e

= Live captured camera stream

L8

=  Extract body-key-points with version of
OpenPose, which is optimized for
mobile devices
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= Normalized body-key-points

= Predict activities with the ActEV activity - =
classier trained with Turi Create
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Conclusion

Our ActEV approach with object detection, custom tracking algorithm and
custom actvity classifier

= We significantly improved performance

= We find a easy way to generate ground for video based activity
recognition

= We proof that the model trained with synthetic data is able to classify
real data

= We integrate the new activity recognition unit in our system
architecture




Future Work

Our ActEV approach with object detection, custom tracking algorithm and
custom actvity classifier

= We will use different kinds of person models for training

= We still working on a approach to export the body-key-points directly
out of the game engine

= |n addition we working on a approach for multiple person realtime
activity recognition

= General optimization and evaluation of our new approach




